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21Abstract Upon their application pesticides end up in soil where they interact with
22the soil microbial community. Considering the pivotal role of soil microorganisms in
23ecosystem homeostasis and the growing evidence about their potential toxicity
24response to pesticide exposure, there is an urgent need to revisit the relevant
25regulatory framework. This is necessary in light of the enormous methodological
26and standardization advances in soil microbial ecology in the last 20 years and the
27outdated assessment scheme currently in place. In this chapter we highlight the key
28elements of a new risk assessment scheme including (a) the definition of microbial
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29 indicator groups like ammonia-oxidizing microorganisms and arbuscular mycorrhi-
30 zal fungi (b) the parallel determination of the level and the duration of the exposure
31 including transformation products (c) the need for implementation in environmental
32 risk analysis of advanced and standardized tools. Based on all these a new tiered-risk
33 assessment scheme is proposed. Emerging issues in soil microbial ecotoxicology are
34 discussed including (a) the assessment of pesticide soil microbial toxicity at ecosys-
35 tem level and (b) the assessment of the soil microbial toxicity of biopesticides,
36 pesticide mixtures and pesticide transformation products on soil microorganisms.
37 We conclude by highlighting emerging scientific questions that are expected to
38 puzzle the soil microbial ecotoxicologists working with pesticides in the next
39 decade.

40 Keywords Ammonia-oxidizing microorganisms, Arbuscular mycorrhizal fungi,
41 Microbial ecotoxicity, Pesticides, Risk assessment, Soil microbial community

42 1 Introduction

43 Pesticides are still the cornerstone of pest control in modern agriculture. However the
44 focus of the pesticide market has shifted in the last 20 years from high dose–low
45 potency chemicals, like triazines and organophosphates, to low dose–high potency
46 active ingredients like neonicotinoids and sulfonylureas. This change coincided, at
47 EU level and beyond, with the implementation of a stringent regulatory framework
48 for pesticide registration reflecting the growing concern of the general public about
49 the frequent detection of pesticide residual levels in fresh produce [1], natural water
50 resources [2, 3] and soil [4]. This regulatory framework was built around the
51 hallmark EC Directive 91/414 (available at https://eur-lex.europa.eu/legal-content/
52 en/ALL/?uri¼CELEX% 3A31991L0414), which describes the tests and procedures
53 required for placing in the market a plant protection product (PPP). This was
54 supplemented by (1) the water framework directive (2000/60/EC, available at
55 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri¼CELEX: 32000L0060),
56 which identified several pesticides as priority water pollutants and (2) the EC
57 Directive 128/2009 (available at https://eur-lex.europa.eu/legal-content/EN/ALL/?
58 uri¼CELEX%3A32009L0128), which put into force procedures for the sustainable
59 use of pesticides. Eventually, in 2009 91/414/EC was replaced by the EC Regulation
60 1107/2009 (available at https://eur-lex.europa.eu/ legal-content/EN/ TXT/?
61 uri¼celex%3A32009R1107), which now dictates how a PPP is granted authoriza-
62 tion for use in the EU market.
63 Environmental risk assessment is based on a direct comparison between environ-
64 mental exposure, determined by mathematical models fed with experimentally
65 obtained environmental fate data, and ecotoxicological outputs derived from rele-
66 vant studies. This assessment is performed along tiers of increasing complexity and

D. G. Karpouzas

https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%25%203A31991L0414
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%25%203A31991L0414
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%25%203A31991L0414
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:%2032000L0060
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:%2032000L0060
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0128
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0128
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0128
https://eur-lex.europa.eu/%20legal-content/EN/%20TXT/?uri=celex%3A32009R1107
https://eur-lex.europa.eu/%20legal-content/EN/%20TXT/?uri=celex%3A32009R1107
https://eur-lex.europa.eu/%20legal-content/EN/%20TXT/?uri=celex%3A32009R1107


67reduced conservatism, which determine the potential risk associated with the use of
68the given pesticide for the suggested use [5].
69Aquatic and terrestrial ecotoxicology were pioneers in establishing a robust set of
70standardized methods to assess the toxicity of pesticides on macroorganisms. In
71contrast the potential toxicity of pesticides on soil microorganisms has been
72overlooked. Soil microorganisms are known as the growth engines of terrestrial
73ecosystems by (1) controlling several key reactions in nutrient cycling which
74modulate soil fertility and the production of greenhouse gases (GHG) [6],
75(2) interacting with crops with the outcome being often beneficial [7] (3) supporting
76soil structure [8] and (4) providing a wealth of functional biodiversity which could
77be exploited by biotechnology. In support of all these, the European Food Safety
78Authority (EFSA) highlighted the presence of regulatory gaps in the assessment of
79the toxicity of pesticides on soil microorganisms and identified soil microbes as a
80specific protection goal [9]. Still the assessment of the toxicity of pesticides on soil
81microorganisms is based on an outdated, crude and insensitive N mineralization test
82(OECD 216), which offers a lumped measurement of ammonification and nitrifica-
83tion rate in soil.
84Hence there is an urgent need for revisiting the current framework regarding
85pesticides toxicity on soil microorganisms, especially in light of the major method-
86ological advances that have occurred in soil microbiology in the last 15 years. In
87accordance with this, EFSA issued a scientific opinion [10] acknowledging the need
88for revising the relevant regulatory framework and suggested that (1) the N miner-
89alization test is still inclusive and should be maintained for pesticide testing (2) new
90molecular and biochemical tools are available but not yet standardized, hence ready
91to be implemented in environmental risk assessment (3) functional microbial end-
92points are more easily quantified compared to microbial diversity and (4) arbuscular
93mycorrhizal fungi (AMF) are good potential bioindicators for assessing the soil
94microbial toxicity of pesticides. In this review we will (1) define the key elements of
95a comprehensive assessment of the toxicity of pesticides on soil microorganisms
96(2) provide an update on the current knowledge regarding toxicity of pesticides on
97soil microorganisms, the methodological toolbox that is available and the level of its
98standardization and (3) highlight emerging research questions that should be the
99focus of future research in soil microbial ecotoxicology. Finally we conclude with
100our suggestion for a tiered risk assessment approach that could act as a core in the
101foreseen revision of the current regulatory framework regarding the toxicity of
102pesticides on soil microorganisms.

1032 Key Elements of an Accurate Assessment of the Toxicity
104of Pesticides on Soil Microorganisms

105The assessment of the toxicity of pesticides on the soil microbial community will
106require a list of necessary elements as follows:
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107 • A thorough and detailed determination of the level and the duration of the
108 exposure of the soil microbial community to the studied pesticides
109 • The utilization of advanced, high resolution methods which will be adequately
110 standardized to determine with high accuracy the toxicity of pesticides on soil
111 microorganisms
112 • The selection of appropriate endpoints and soil microbial groups that could act as
113 bioindicators of the toxicity of pesticides to soil microorganisms
114 • A relevant tiered risk assessment scheme supported by guidelines for experimen-
115 tal setup at each tier

116 We will further present an update on each of these key elements and define which
117 pieces of the puzzle are still missing.

118 2.1 Pesticide Exposure Measurement

119 Monitoring of pesticide dissipation and transformation in soil studies should consti-
120 tute an integral part of any experiment aiming to assess the toxicity of pesticides on
121 soil organisms, including soil microbiota. Such measurements enable us to define the
122 level and the duration of exposure of the soil microbial community to the pesticide in
123 question. Furthermore, determination of the transformation products (TPs) formed in
124 soil during pesticide dissipation could clarify the role of TPs on effects observed.
125 Correlation testing between the measured soil concentrations of pesticides and their
126 TPs with temporal microbial measurements would point to the causal agent of the
127 potential toxicity on the soil microbial community (parent vs TPs). Using such an
128 approach Karas et al. [11] identified two demethylated products of the herbicide
129 isoproturon, MD-IPU and DD-IPU, as key drivers of the reduced activity of acid and
130 alkaline phosphatases in soils treated with various dose rates of isoproturon. Using a
131 similar approach other research groups managed to distinguish the toxicity of
132 (1) iprodione and 3,5-dichloroaniline [12] (2) tebuconazole and its TPs [13] (3) chlor-
133 pyrifos and trichloropyridinol [11].

134 2.2 Use of Advanced, High Resolution and Standardized
135 Methods

136 Methodological advances in soil microbiology have revolutionized our view of soil
137 microorganisms and their role in ecosystem functioning. The new molecular tools
138 that became available from 1995 onwards unravelled an enormous microbial diver-
139 sity in soil ecosystems, which was previously unattained due to our limited knowl-
140 edge of their special nutritional needs [14]. The molecular and biochemical methods
141 that are currently available could be categorized into two broad groups:
142 (a) functional tools that measure either the activity of key microbial processes or

D. G. Karpouzas



143the dynamics of functional microbial groups and (b) structural tools that measure the
144diversity of the overall soil microbial community and its phylogenetically or func-
145tionally distinct components.
146Standardization of methods constitutes a prerequisite for their implementation in
147pesticide environmental risk analysis. As EFSA suggested [10], standardization of
148functional methods in soil microbial ecology is more advanced compared to molec-
149ular tools for measuring microbial diversity. Biochemical tools measuring the rates
150of microbially-mediated reactions (e.g. nitrification, denitrification), the overall
151microbial activity (e.g. respiration) or the activity of microbial enzymes involved
152in biogeochemical cycling (phosphatases, arylsulfatases, aminopeptidases,
153chitinases, etc.) have been extensively used for assessing the toxicity of pesticides
154on soil microbial functioning [11, 12, 15–17]. These methods are characterized by
155high standardization level with several relevant ISO standards being available
156(Table 1). In addition, several of these methods, like the determination of activity
157of soil microbial exoenzymes [18] and soil microbial respiration through
158MicroResp® [19], have been modified for high-throughput use facilitating their
159implementation in rapid toxicity screening assays. Despite their high level of
160standardization these methods are still not used in pesticide environmental risk
161assessment. A possible reason for this is the general lack of consistency in their
162response to pesticide exposure. This has been demonstrated in a range of soil studies
163where pesticides applied at increasing dose rates did not impose a clear dose-
164dependent response [11, 20].
165Molecular methods have been used in soil microbial ecology to determine the
166abundance (q-PCR), activity (RT-q-PCR) and diversity (PCR-based techniques) of
167soil microorganisms. The implementation of these methods in pesticide environ-
168mental risk analysis was until recently blocked by the lack of standardization
169[21]. This has changed in the last 10 years where ISO standards for soil DNA
170extraction (ISO11063) and determination of the soil microbial biomass via q-PCR
171(ISO 17601) were introduced, challenging the recent scientific opinion of EFSA
172regarding the low level of standardization of molecular methods [10]. Indeed several
173soil studies have used q-PCR methods to determine the effects of pesticides on the
174abundance of phylogenetical distinct microbial groups like bacteria, fungi or archaea
175or most importantly the abundance of functional microbial groups like ammonia-
176oxidizing microorganisms (AOM) [22–24], sulphur-oxidizing bacteria [11] and
177degraders of biogenic aromatic compounds [13].
178Several tools are currently available for the determination of microbial diversity
179in soil, which vary in their level of standardization and phylogenetic resolution.
180Phospholipid Fatty Acid analysis (PLFAs) is a well-standardized method
181(ISO/TS29843-1 and -2), which provides information about the composition of the
182soil microbial community at low phylogenetic resolution. On the other hand,
183PCR-based molecular methods suffer from limited standardization, but they provide
184a deeper phylogenetic characterization of the composition of the soil microbial
185community. The depth of analysis of the soil microbial community offered by
186these methods has increased from the lower resolution of earlier fingerprinting
187methods like Denaturing Gradient Gel Electrophoresis (DGGE) and Terminal
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188 Restriction Fragment Length Polymorphism (TRFLP) [25, 26], to the higher reso-
189 lution of recent next generation amplicon sequencing approaches or the so-called
190 metataxonomics [27]. DGGE and TRFP, either as stand-alone approaches or in
191 combination with clone libraries, have been heavily used in the period of
192 2000–2015 to determine effects of pesticides on the diversity of phylogenetically

t1:1 Table 1 A list of the ISO standardized methods that are currently available in soil microbiology

Year ISO code Full title of standardized methodt1:2

1997 ISO14240:1 Determination of soil microbial biomass – part 1 substrate induced
respiration methodt1:3

1997 ISO14240:2 Determination of soil microbial biomass – part 2 fumigation-
extraction methodt1:4

2002 ISO16072 Laboratory methods for determination of microbial soil respirationt1:5

2009 ISO10832 Effects of pollutants on mycorrhizal fungi- germination testt1:6

2010 ISO/TS29843-1 Determination of soil microbial diversity – part 1: Method by phos-
pholipid fatty acid analysis (PLFA) and phospholipid ether lipids
(PLEL) analysist1:7

2011 ISO/TS29843-2 Determination of soil microbial diversity – part 2: Method by phos-
pholipid fatty acid analysis (PLFA) using the simple PLFA extrac-
tion methodt1:8

2012 ISO15685 Determination of potential nitrification and inhibition of
nitrification – rapid test by ammonium oxidationt1:9

2012 ISO14238 Determination of nitrogen mineralization and nitrification in soils
and the influence of chemicals on these processest1:10

2012 ISO17155 Determination of abundance and activity of soil microflora using
respiration curvest1:11

2016 ISO17601 Estimation of abundance of selected microbial gene sequences by
quantitative PCR from DNA directly extracted from soilt1:12

2016 ISO18187 Contact test for solid samples using the dehydrogenase activity of
Arthrobacter globiformist1:13

2018 ISO/TS20131-1 Easy laboratory assessments of soil denitrification, a process source
of N2O emissions – part 1: Soil denitrifying enzymes activitiest1:14

2018 ISO/TS20131-2 Easy laboratory assessments of soil denitrification, a process source
of N2O emissions – part 2: Assessment of the capacity of soils to
reduce N2Ot1:15

2018 ISO20130 Measurement of enzyme activity patterns in soil samples using
colorimetric substrates in micro-well platest1:16

2019 ISO23753:1
ISO23753:1/
AMD1:2020

Determination of dehydrogenase activity in soils – part 1: method
using triphenyltetrazolium chloride (TTC)
Determination of dehydrogenases activity in soils – part 1: Method
using triphenyltetrazolium chloride (TTC) – Amendment 1t1:17

2019 ISO23753:2
ISO23753:2/
AMD1:2020

Determination of dehydrogenase activity in soils – part 2: method
using iodotetrazolium AU1chloride (INT)
Determination of dehydrogenase activity in soils – part 2: method
using iodotetrazolium chloride (INT) – amendment 2t1:18

2019 ISO/TS22939 Measurement of enzyme activity patterns in soil samples using
fluorogenic substrates in micro-well platest1:19

2020 ISO11063 Method to directly extract DNA from soil samplest1:20

D. G. Karpouzas

user
Cross-Out

user
Cross-Out

user
Highlight
Abbreviation is not required and could be left out



193and functionally distinct microbial groups [28–31]. However these methods fail to
194provide accurate quantitative information on pesticide effects, especially on less
195abundant members of the soil microbiota. Since 2015 several studies have used
196metataxonomic approaches to identify effects of pesticides on the diversity of
197bacteria, fungi [32, 33] and distinct functional microbial groups like ammonia-
198oxidizing microorganisms (AOM) [12]. Benchmarking protocols for the preparation
199and setup of metataxonomic analysis of the soil bacterial (https://earthmicrobiome.
200org/protocols-and-standards/16s/) and fungal diversity (https://earthmicrobiome.
201org/protocols-and-standards/its) were developed by the Earth Microbiome Project
202(ECM) [34] and have been largely adopted by most recent pesticide soil ecotoxicity
203studies. Despite this major standardization step, we are still missing standardization
204at the bioinformatic handling of the sequencing data. A standardized pipeline for the
205bioinformatic analysis of amplicon sequencing data will make possible the full
206implementation of these powerful tools in the pesticide regulatory framework.

2072.3 Microbial Endpoints and Bioindicators

208Assessment of the toxicity of pesticides on aquatic organisms but also on terrestrial
209macrobiota relies on tests performed with single species from different trophic levels
210identified as bioindicators. Such examples are Daphnia magna for aquatic inverte-
211brates, Oncorhynchus mykiss for fishes and Eisenia fetida for earthworms
212[10, 35]. All these bioindicator species were selected based on (1) their key ecolog-
213ical role (2) their higher sensitivity, compared to other species in the same group of
214organisms (3) their meaningful ecotoxicological response to toxicants (4) our good
215knowledge of their life cycle and (5) the existence of assays, protocols and methods
216to determine their response to pesticides. In accordance with all these, we need to
217identify microbial groups which fulfil all or most of the above criteria as candidate
218bioindicators for assessing the toxicity of pesticides on soil microorganisms.
219Several groups of soil microorganisms have been proposed or used such as
220microbial indicators including AOM [36], AMF [10, 23], N-fixing bacteria [37],
221protists [38] and microalgae [39]. Most studies have focused on the first two
222microbial groups, in line with their key functional role in terrestrial ecosystems,
223although protists have also attracted attention in recent years due to their important
224role as mediators of bacterial and fungal populations in soils [40].
225AOM control the rate-limiting step of nitrification, the energy-gain oxidation of
226ammonia to hydroxylamine which is further transformed to nitric oxide and even-
227tually to nitrite [41]. Nitrite is subsequently oxidized to nitrate by nitrite-oxidizing
228bacteria (NOB) [42] (Fig. 1). Nitrification constitutes one of the most important
229inputs of N in soil contributing 330 Tg of N per year [43], hence perturbations in its
230operation are expected to adversely affect N balance in soil. Beyond nitrification,
231AOM have been found to contribute to N2O emissions, a major GHG, through a
232process called nitrifiers denitrification [44]. Ammonia oxidation constitutes a spe-
233cialized process controlled by (1) ammonia-oxidizing bacteria (AOB), mostly
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234 belonging to β-proteobacteria and specifically to Nitrosomonas and Nitrosospira
235 [45] (2) ammonia-oxidizing archaea (AOA) belonging to the phylum
236 Thaumarchaeota with lineages Nitrososphaerales and Nitrosotaleales dominating
237 in soil ecosystems [46] and (3) comammox bacteria which perform the full nitrifi-
238 cation process in one cell [47] and was recently shown to actively participate in
239 ammonia oxidation in soil [48]. The contribution of the different groups of AOM in
240 ammonia oxidation in soil is largely determined by soil physicochemical attributes
241 like pH [49] and ammonia concentrations pointing to an AOM niche specialization
242 [50, 51]. All AOM share an enzyme called ammonia monooxygenase, a periplasmic
243 enzyme which is responsible for the oxidation of ammonia to hydroxylamine
244 [43]. The gene encoding the alpha subunit of ammonia monooxygenase (amoA)
245 provides a thorough phylogenetic classification of AOM [45, 46]. This gene consti-
246 tutes the key marker gene for the design of group-specific primers for AOA, AOB
247 and comammox [52–54] that have been used in q-PCR, RT-q-PCR and amplicon
248 sequencing to determine the abundance, activity and diversity of AOM in soil
249 ecosystems [12, 20].
250 The responsiveness of nitrifiers to pesticides was first reported by Domsch [55]
251 who observed a high sensitivity of Nitrosomonas and Nitrobacter to pesticides.
252 Since then, further studies reinforced the sensitivity of AOM to abiotic stressors and
253 suggested their use as microbial bioindicators [36]. Indeed, several studies have
254 explored the response of AOM to pesticide exposure by measuring their abundance
255 via q-PCR [24, 56–58], their activity via measurements of potential ammonia
256 oxidation (or potential nitrification) [20], and their diversity via DGGE, TRFLP or

Fig. 1 A schematic representation of the microbially mediated transformation of nitrogen during
nitrification along with the groups involved in each step of the process. AOA Ammonia oxidizing
archaea, AOB Ammonia oxidizing bacteria, NOB Nitrite oxidizing bacteria, Comammox Complete
ammonia oxidation bacteria
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257amplicon sequencing of the amoA gene [12, 31, 59]. Recent studies by Hund-Rinke
258et al. [60] tested the toxicity of silver nanoparticles, as potential pesticides, on soil
259microorganisms using a range of standardized methods including potential nitrifica-
260tion (or so-called potential ammonia-oxidation method ISO 15685), MicroResp®,
261and exoenzymes activity. The former was the most sensitive endpoint providing a
262consistent dose-effect response allowing the calculation of EC50 values. Similar
263studies have also reported the sensitivity of potential nitrification to pesticide
264exposure [20, 61]. Potential nitrification is a measure of the rate of the microbial
265transformation of ammonia to nitrite, in contrast to the N-mineralization test which is
266a lump measurement of ammonification and nitrification compromising its sensitiv-
267ity to abiotic stressors. All the above evidence along with its ISO standardization
268(ISO 15685) reinforce its potential for implementation in the battery of tests that
269could be used to assess the toxicity of pesticides on soil microorganisms.
270Most studies to date have tested the effect of different pesticides to AOM
271abundance via q-PCR of the amoA gene, but only a few have worked at transcription
272level. In one of these few studies, Papadopoulou et al. [20] observed a clear temporal
273inhibition of the activity of AOM in soil by ethoxyquin only when amoA transcripts
274were measured. Considering the high turnover rates of RNA in soil, RNA-based
275approaches are expected to provide a more accurate view of the effects of pesticides
276on the activity of functional microbial groups like AOM. However, the labile nature
277of RNA has precluded its wider use in pesticide microbial ecotox studies and maybe
278its use could be considered when refinement of the ecotox part of the risk assessment
279is requested. Overall AOM constitute good potential bioindicators for the assessment
280of the toxicity of pesticides on soil microorganisms since (1) they control a very
281significant function in soil N cycling (2) they are particularly sensitive to pesticide
282exposure providing a consistent and relevant ecotoxicological response (3) we have
283a good knowledge of their life cycle, ecology, biochemistry and physiology and
284(4) we have well-standardized methods to measure their activity and abundance in an
285accurate way.
286Apart from AOM other N-cycling microbial groups have been considered as
287valuable toxicity endpoints including denitrifying bacteria [62] and N-fixing bacteria
288[37]. Pesticide effects on denitrification has been measured through q-PCR analysis
289of bacterial genes involved in the different steps of denitrification, although results
290were contrasting and no clear ecotoxicological response was seen [11, 62, 63]. Pes-
291ticide effects on N-fixing bacteria have been also investigated, mostly via nifH-based
292q-PCR, with the results varying from no inhibition by trifluralin (especially com-
293pared to AOM) [64], to temporal inhibition by chlorothalonil [65] and to strong
294inhibition by 1,3-dichloropropene [66].
295AMF were identified as potential bioindicators for assessing the toxicity of
296pesticides on soil microorganisms [10, 16]. AMF are the most ubiquitous plant
297symbiotic microbes on earth with up to 80% of plants colonized by obligate
298biotrophic fungi of the phylum Glomeromycota [67]. They colonize roots and derive
299plant photosynthates in exchange for nutrients (up to 80% of plant P is of AMF
300origin), offering plant tolerance to biotic and abiotic stress [68]. Besides improving
301plant fitness, AMF also contribute to the formation and stabilization of soil
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302 aggregation [69] and improve soil carbon stocks [70]. At the ecosystem level AMF
303 could affect the composition and productivity of plant communities with reciprocal
304 effects on nutrient cycling [71].
305 AMF sensitivity to pesticides has been extensively studied at various experimen-
306 tal scales [16, 72, 73]. However, their obligatory symbiotic nature and their biolog-
307 ical cycle which involves intraradical and extraradical life stages require the use of
308 complementary experimental approaches to identify the nature of the inhibitory
309 effects observed: direct on AMF or indirect stemming from phytotoxicity effects
310 on the plant host. Direct effects on AMF are expected to be imposed mostly by
311 fungicides, unlike herbicides whose effects on AMF are expected to be indirect by
312 exerting their toxicity to the plant host. In addition, the different life stages of AMF
313 are not expected to be equally exposed to pesticides, while the consequences of
314 pesticide exposure for AMF survival are expected to vary in the different life stages.
315 Extraradical AMF life stages are more prone to pesticide exposure, unlike
316 intraradical stages which are less exposed. The standard ISO-10832 «Effects of
317 pollutants on mycorrhizal fungi- germination test» could be used to assess effects
318 of pesticides on extraradical stages of AMF, using spore germination of
319 Funneliformis mosseae as a relevant toxicity endpoint. Giovanneti et al. [74] tested
320 the effect of 14 pesticides on spore germination and pre-symbiotic mycelial growth
321 and observed that fungicides were more toxic than the other pesticide groups tested.
322 Mallman et al. [75] proposed an optimization of the ISO test with the use of
323 Gigaspora albida and Rhizophagus clarus, to cover a wider diversity of AMF,
324 and boric acid as negative control instead of cadmium nitrate.
325 Pot and field studies have been also employed to assess the toxicity of pesticides
326 on natural assemblages of AMF. In those studies, plant roots mycorrhizal coloniza-
327 tion, P content and other plant physiological attributes (root and shoot biomass) are
328 often used as ecotoxicological endpoints to identify potential adverse effects on
329 AMF [72, 76]. These plant-soil studies introduce realism and complexity in ecotox-
330 icological assessment, but at the same their outcome is affected by several
331 confounding pesticide- and AMF-related factors. A classic example is provided by
332 the study of Karpouzas et al. [16] which showed that nicosulfuron when applied
333 repeatedly in soil at rates higher than x10 the recommended dose rate led to a
334 dramatic decrease in maize roots colonization by AMF, although it was not possible
335 to distinguish if effects were direct on AMF or indirect driven by plant host
336 phytotoxicity. The use of in vitro tests with AMF could complement pot studies
337 and provide a conservative estimate of the potential toxicity of pesticides on the
338 different life stages of AMF, and hence clarify the nature of the effects observed.
339 In vitro cultivation of AMF is possible on self-propagating mycorrhized Ri
340 tDNA-transformed roots of Daucus carota or Medicago truncatula growing in
341 sterilized minimal medium [77, 78]. These mono-compartmental axenic culture
342 systems have been used to assess the toxicity of pesticides at the symbiotic phase
343 and allow the calculation of IC50 values. Wan et al. [77] calculated the IC50 values
344 for a range of pesticides using reduction in extraradical mycelium sporulation as the
345 most conservative endpoint. Benomyl, chlorothalonil and glyphosate were the most
346 toxic pesticides with IC50 values <1 mg/L compared to AMPA (IC50 ¼ 4.2 mg/L),
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347the major transformation product of glyphosate, and the biopesticide azadirachtin
348(IC50 ¼ 230 mg/L). Subsequently, Zocco et al. [79] used a modified
349bi-compartmental system composed of a root compartment (RC) and hyphae com-
350partment (HC) to test the toxicity of fenpropimorph and fenhexamid on the symbi-
351otic phase, the hyphae and the spores at the post-symbiotic phase and also on the root
352biomass. A three-compartment AM-P system composed of a shoot compartment
353(SC) where a plantlet shoot grows, and the RC and SC described above were
354proposed by Dupré de Boulois et al. [80]. AM-P systems have been used to test
355the toxicity of pesticides like fenpropimorph and fenhexamid on the capacity of
356extraradical hyphae and spores to colonize roots, while it offers the opportunity to
357determine effects on P uptake using 33P Zocco et al. [78]. These AM-P systems
358could be further advanced including a second SC associated with the HC to
359systematically test the effect of pesticides on the capacity of extraradical hyphae to
360sporulate and colonize plant crops where the pesticide tested is destined for use
361Buysens et al. [73]. Besides just determining toxicity endpoint values for AMF,
362these AMF in vitro cultivation systems could be used for the determination of the
363toxicity mechanism, the nature of the effect observed, and also of potential effects on
364the physiology of symbiosis. Campagnac et al. [81] used the single compartment
365axenic culture system to determine the effects of fenhexamid and fenpropimorph on
366the sterol biosynthesis in mycorrhized plantlets. Zocco et al. [78] used the AM-P
367system to define the toxicity mechanism of the same two fungicides focusing on
368plant P uptake machinery.
369The introduction of molecular tools in the study of AMF unravelled an enormous
370diversity which revolutionized the taxonomy of Glomeromycota Oehl et al.
371[82]. Still only a few studies have looked into the effects of pesticides on the
372diversity of AMF. Karpouzas et al. [16] using a DGGE – cloning approach showed
373that nicosulfuron, when applied at rates multiple times higher than the
374recommended, could result in a dramatic decrease in the diversity of AMF in
375maize roots. Rivera-Becerril et al. [83] studied the effect of a mixture of fenhexamid,
376folpet and deltamethrin applied at x1, x10 and x20 dose rates on the soil diversity of
377AMF, via clone library with taxon-specific primers and observed a reduction of
378AMF soil diversity with increasing dose rates. Jin et al. [76] constitutes the only
379study to date that used amplicon sequencing to determine the effects of a range of
380pesticides on AMF intraradical diversity. They observed pesticide-specific effects on
381AMF community with Gigaspora hoi and Acalauspora uera showing increasing
382sensitivity to fludioxonil in pea and chickpea, respectively.
383Overall, AMF appear to be also good candidate bioindicators to assess the
384toxicity of pesticides on soil microorganisms since (1) they control a series of key
385functions in soil ecosystems (2) we have standardized tools to define effects of
386pesticides on their growth (3) we have a good knowledge of their life cycle and
387biology and (4) they are generally sensitive to pesticides. However, we should note
388that due to their symbiotic nature a combination of in vitro and soil-plant studies are
389often required in order to define the true extent of pesticides toxicity on AMF.
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390 2.4 Tiered-Risk Assessment Scheme and Standardization
391 of Experimental Planning

392 To date environmental risk assessment of pesticides relies on a tiered system starting
393 from simple and highly conservative Tier I assays and moving gradually to less
394 conservative and more realistic Tiers II and III. To date no such risk assessment
395 scheme is available for soil microorganisms. Pioneering studies by Jonhen and Drew
396 [84] and Atlas et al. [15] proposed for the first time a set of experimental procedures
397 and rules on how to determine the toxicity of pesticides on soil microorganisms.
398 Both studies agreed that if significant inhibitory effects on soil microbial functioning
399 are observed at lab scale, the toxicity of pesticides on soil microorganisms should be
400 further examined at field tests. Following the same philosophy, Karpouzas et al. [23]
401 established a two-tiered risk assessment procedure where lab soil microcosms are
402 employed at Tier I to determine the toxicity of pesticides on soil microorganisms. If
403 effects are observed a Tier II assessment at field scale should be undertaken AU2(Fig. 2a).
404 Subsequently Karpouzas et al. [85] provided a more conclusive tiered system
405 composed of three tiers of increasing experimental complexity based on the ecotox-
406 icological response of key soil functional groups like AOM and AMF (Fig. 2b). This
407 scheme is composed of (1) a Tier I highly conservative in vitro screening of
408 pesticides against a set of soil derived AOM and AMF strains that cover the different
409 ecophysiological and phylogenetic variants of these microbial groups (2) a Tier II
410 toxicity assessment in lab soil microcosms (or pot studies when AMF are consid-
411 ered) against natural assemblages of AOM and AMF and (3) a Tier III toxicity
412 assessment at field scale against natural assemblages of AOM and AMF. In case
413 where an unacceptable risk for soil microorganisms is still evident refinement of
414 exposure could be an option to minimize risk. Fast track in vitro tests for AOM and
415 AMF are available and have been used in the past to assess pesticides toxicity
416 [12, 73, 78]. However certain aspects of these tests should be standardized
417 (e.g. selection of the most ecotoxicological relevant strains for testing) before
418 considered for inclusion in the regulatory framework.
419 Several studies have assessed the toxicity of pesticides on soil microbial diversity
420 or functioning. However inconsistencies in experimental planning have prevented
421 the systematic characterization of the potential risk associated with the use of
422 pesticides for soil microorganisms. Below we will identify the most common
423 problems in experimental planning and we will propose certain solutions for a
424 more systematic and thorough determination of the soil microbial toxicity of
425 pesticides.

426 • In most ecotox studies pesticides are applied at increasing dose rates and the
427 effects on selected endpoints are followed. Several studies have used particularly
428 high pesticides levels, up to x100 and x1000 the recommended dose rates or
429 application schemes that are not relevant to the registered application scheme of
430 the tested pesticide [23, 28, 86]. Effects observed under these experimental
431 conditions are not ecotoxicologically relevant and do not substantiate a potential
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432risk for soil microorganisms. We propose (1) in lab tests pesticides will be tested
433at x1, x2 and x10 the recommended dose rate and (2) in field tests pesticides will
434be tested at x1, x2 and x5 the recommended dose rate (3) at both experimental
435scales a non-treated control treatment should be included.

Fig. 2 Two-tier risk assessment (a) and three-tier risk assessment schemes (b) proposed for
assessing the risk associated with the use of pesticides for soil microorganisms. AOM Ammonia-
oxidizing microorganisms, AMF Arbuscular mycorrhizal fungi

Assessing the Effects of Pesticides on the Soil Microbial Community:. . .



436 • Several soil studies investigating the effects of pesticides on soil microorganisms
437 are often of limited duration (e.g. 30 days). This does not allow a potential
438 recovery of the soil microbial community from temporal effects that might be
439 evident at the first 30 days of exposure. We propose that (1) soil lab tests will be
440 extended to at least 70 days depending on the persistence of the pesticide tested,
441 and temporal measurements of microbial toxicity endpoints will be performed
442 along the experimental duration (2) field tests should be extended for the whole
443 growing season of the crop used. Such a monitoring setup will allow potential
444 recovery to be observed.
445 • Several of the currently available studies have explored the effects of pesticides
446 on selected functional and diversity microbial endpoints in a single soil limiting
447 the applicability of the results. We propose that all lab tests to be performed at
448 three soils with varying pH and organic carbon content, two parameters that are
449 known to affect pesticide behaviour [87] but also microbial activity and
450 diversity [6].
451 • When summarizing studies looking at the effects of pesticides on AOM we noted
452 that only a few of them have considered amending soil with ammonium prior to
453 pesticide exposure [12, 22, 59]. This practice is essential to trigger the prolifer-
454 ation and activity of AOM in soil. However due care should be taken regarding
455 the source (inorganic or organic) and the level of ammonium added in the soil.
456 Both of these parameters are known to strongly affect the activity of the different
457 microbial players in ammonia oxidation in soil [50].
458 • A final tip that we believe it is essential for studies focusing on the effects of
459 pesticides on AMF is the inclusion of plant species which are relevant for the
460 agronomic use of the tested pesticides.

461 3 Emerging Issues in the Assessment of the Soil Microbial
462 Toxicity of Pesticides

463 A new risk assessment scheme for defining in a robust way the potential risk for soil
464 microorganisms due to pesticide application is urgently required. The use of the
465 tiered risk assessment scheme proposed here, combined with the use of AOM and
466 AMF as bioindicators of the toxicity of pesticides on soil microorganisms and the
467 implementation of advanced and standardized tools would fill the gap in pesticide
468 regulatory process. The initial focus on functional microbial endpoints could further
469 expand to diversity endpoints when the on-going standardization of modern
470 metataxonomic tools will be finalized. Still there are emerging issues regarding the
471 study of the toxicity of pesticides on soil microorganisms that should be the focus of
472 studies in the next few years. Some of these emerging issues are described in the
473 following paragraphs.
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4743.1 Toxicity of Pesticides at Soil Ecosystem Level

475Most studies to date have assessed the toxicity of pesticides on individual taxa or
476functional groups separately or in the context of a specific biochemical pathway
477ignoring the ecological dimension of the effects observed. However, in soil micro-
478organisms are assembled in subpopulations which are intertwined by metabolic links
479or other types of interactions and can be important for ecosystem homeostasis
480[88, 89]. Resilience and robustness of microbial consortia to external perturbations
481has been attributed either to microbial diversity, which enables tolerant members to
482fill functional voids left by intolerant species [90], or to functional complementarity
483of network members resulting in better exploitation of resources and elevated
484resistance to stress [91]. Little is known about the impact of pesticides on soil
485microbial networks and the consequences for soil functioning. A functional micro-
486bial network that could be utilized in such an approach could be AOM, NOB and
487denitrifying bacteria. Previous studies have looked into the effect of pesticides in the
488above functional microbial network via gene abundance measurements which pro-
489vided conflicting results [11, 65]. Measurements at activity level (RT-q-PCR) and
490determination of the concentrations of N intermediates supporting a metabolic flux
491analysis would provide a robust assessment of the potential toxicity of pesticides on
492soil microbial networks.
493Microorganisms also interact with other organisms within the soil-food web.
494Predator–prey relations are particularly important for soil ecosystem functioning
495with protists-bacteria being the best-studied model system [92]. Predation by protists
496influences bacterial and fungal diversity and productivity with consequences on the
497flux organic nutrients into biomass at higher trophic levels [93, 94]. Recent studies
498showed that the diversity of both protists and bacteria interactively determines the
499performance of the predator [95]. External perturbations like the application of
500pesticides could affect diversity at both trophic levels with possible effects on
501ecosystem functioning [96, 97]. To date research on the impact of pesticides has
502overlooked potential effects on multiple levels in soil food webs and microbial
503interactions. The protists–bacteria relationship could be used as a model predator–
504prey system in a soil-food web centric assessment of the toxicity of pesticides on soil
505microbiota. This could be determined in simple synthetic microbial communities
506(quasi in vitro systems) and further to complex natural soil assemblages enabled by
507the major advancements in microbial diversity analysis at both trophic levels [98].

5083.2 Toxicity of Pesticide Mixtures and Co-formulants

509PPP contain, apart from the active ingredient, several co-formulants that ensure that
510maximum pesticide amount will reach the target. The identity of these co-formulants
511is rarely known but they seem to contribute partially or heavily to the toxicity of
512pesticides on soil microorganisms. The potential effects of co-formulants on the soil
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513 microbiota could be experimentally addressed via a comparative assessment of
514 effects triggered by the pure active ingredient and the corresponding commercial
515 formulation. This is a practice that is not largely followed when assessing the toxicity
516 of pesticides on soil microorganisms through the OECD 216 test. In such a com-
517 parative study, Crouzet et al. [99] showed that the commercial formulation of the
518 herbicide mesotrione when applied at x10 or x100 the recommended dose induced
519 stronger effects on the structure of soil cyanobacteria compared to the pure active
520 ingredient. Similarly, Rousidou et al. [31] demonstrated that glucose and skimmed
521 milk powder, contained as additives in a commercial formulation of the nematode
522 parasitic fungus Paecilomyces lilacinus, were responsible for a temporal inhibition
523 of AOM upon soil application of the commercial formulation BIOACT®.
524 Besides additives, PPP commonly contain more than one active substance
525 (ca. 25% in Germany) [100], hence releasing mixtures of pesticides in the environ-
526 ment that may exhibit effects deviating from those seen when applied individually.
527 Studies have explored the aquatic toxicity of such mixtures [101] and suggested that
528 for mixtures composed of pesticides with the same or different mode of action the
529 concentration addition (CA) or the independent action (IA) models, respectively,
530 could predict toxicity [102]. In contrast, little is known about the toxicity of pesticide
531 mixtures on soil ecosystems. Evaluating the applicability of CA and IA models for
532 assessing the soil microbial toxicity of pesticides or devising new models, more
533 relevant for soil ecosystems, could be a new frontier in pesticide soil microbial
534 ecotoxicology.

535 3.3 Toxicity of Biopesticides

536 The growing public concern about the effects of synthetic pesticides on environ-
537 mental quality and soil health has shifted attention to biopesticides which have
538 gained ground in the pesticide market. Biopesticides is a broad group of pesticides
539 of biological origin which could be broadly categorized to (a) microbials where the
540 active agent is a microorganism that protect crops from fungal and insect infestations
541 (b) natural products or biochemicals or botanicals that are biogenic compounds,
542 products of the secondary metabolism of plants and microorganisms with strong
543 biocidal activity. Due to their biological origin, biopesticides are a priori considered
544 as low risk. However this remains to be verified by a number of specific studies. The
545 most studied natural product regarding its off-target toxicity to soil microorganisms
546 is azadirachtin, with the results obtained being not in support of a low-risk profile. In
547 vitro tests suggested low risk of azadirachtin for AMF [77]. However soil studies
548 showed that azadirachtin even at the recommended dose had a consistent inhibitory
549 effect on the abundance and the transcriptional activity of AOM, N-fixing bacteria
550 and denitrifying bacteria [56, 103] and negatively affected the diversity of bacteria,
551 fungi and AMF [30, 57]. In fact the effects observed were equal or even higher than
552 those induced by comparatively studied synthetic pesticides. An interesting study by
553 Romdhane et al. [104] compared the effects of the natural triketone herbicide
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554leptospermone and its synthetic derivative sulcotrione on the soil microbial com-
555munity. In line with the results of azadirachtin they noted that leptospermone
556induced a stronger perturbation on the soil bacterial community compared with its
557synthetic counterpart. These studies certainly challenge the general perception that
558natural products are characterized by lower off-target toxicity compared to synthetic
559pesticides.
560Even less studies are available for microbial pesticides. Potential toxicity effects
561of microbials on the soil microbial community largely depend on the mode of action
562of the microbial pesticide itself. Hence microbial pesticides based on microorgan-
563isms which do not act through the production of biocidal compounds are not
564generally expected to affect soil microorganisms. This was clearly the case for the
565nematode parasitic fungi P. lilacinus strain PL251 which did not have a direct
566inhibitory effect on AOM [31]. In contrast Yu et al. [105] using a different
567P. lilacinus strain PL1210 showed strong inhibitory effects on nitrification and
568AOM abundance which were attributed to antimicrobial metabolites that the tested
569strain produces. Other relevant studies also suggested that microbial pesticides based
570on microorganisms acting through parasitism or antagonism (i.e. Metarhizium
571brunneum, Fusarium oxysporum f.sp. stringae, Bacillus amyloliquefaciens) did not
572appear to induce strong and persistent effects on the soil microbial community [106–
573108].
574According to the registration framework in Europe biopesticides are collectively
575treated as low-risk compounds, still undergoing the same registration process as
576synthetic pesticides. Although this could be relevant for natural pesticides, we argue
577that the risk assessment procedure for microbial pesticides should be adjusted to
578account for the particularities of these products. This should certainly include
579parallel ecotoxicity tests between formulations and active microbial agents along
580with the implementation of tools for monitoring their fate in soil.

5813.4 Toxicity of Transformation Products

582In addition to parent compounds, pesticide environmental risk assessment extends to
583their TPs that are formed at levels>10% of the parent compound. Minor TPs (<10%
584of the parent compound) could evade risk assessment, although they might exhibit
585similar or even higher toxicity than the parent pesticide if they carry toxicophore
586moieties in their structure [109]. Several studies have showed that TPs could be more
587toxic than the parent compound. For example, Papadopoulou et al. [20] showed that
588quinone imine, a TP of ethoxyquin used as preservative in fruit packaging plants,
589was responsible for the inhibition of abundance and diversity of AOM observed in
590soils treated with ethoxyquin. Further studies by Vasileiadis et al. [12] suggested that
5913,5-dichloroaniline, a major TP of iprodione, was responsible for the strong inhibi-
592tion in the abundance and activity of AOM in soils treated with iprodione. Similar
593soil studies with chlorothalonil showed that the formation of 4-hydroxy-
594chlorothalonil resulted in strong inhibitory effects on microbial activity
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595 [110]. Advances in analytical chemistry have enabled the detection of previously
596 unknown TPs formed even in low concentrations [111]. Recently, enviPath, a
597 database and prediction tool for the biotransformation of organic contaminants
598 [112], has been updated with all freely accessible EU regulatory data on pesticide
599 degradation in lab soil studies with the aim to develop more accurate prediction for
600 pesticide biotransformation pathways [113]. Complementary tools (i.e., QSAR)
601 enabling the prediction of the soil microbial toxicity of TPs could allow for a targeted
602 investigation of the TPs toxicity.

603 4 Conclusions and Future Perspectives

604 The assessment of the soil microbial toxicity of pesticides constitutes a major gap in
605 the current pesticide regulatory framework and corrective actions are urgently
606 required. These should encompass the dramatic methodological advances in soil
607 microbiology and their increasing level of standardization. In this quest we believe
608 that key functional microbial groups like AOM and AMF should have a key role as
609 bioindicators of the toxicity of pesticides on soil microorganisms. This short list of
610 microbial indicators should be gradually enriched with other potential candidates
611 like protists or other microbial groups that could be identified through the use of
612 advanced ecotoxicological tools (i.e. Species Sensitivity Distributions) in a meta-
613 analysis of high-throughput amplicon sequencing data. This will be facilitated by the
614 development of a database of amplicon sequencing data derived from studies
615 investigating the toxicity of pesticides on the soil microbial diversity. A first example
616 of such an effort is the microbiome stress project presented by Roca et al. [114].
617 Function-based toxicity endpoints are more mature and standardized for imme-
618 diate implementation in the regulatory process unlike diversity endpoints whose
619 standardization is still on-going. Furthermore, we still lack a clear scientific
620 evidence-based answer to the question “How much soil microbial diversity loss
621 we could accept without compromising soil ecosystem functioning”. Studies pro-
622 viding evidence for decision making at this level will open the route for the
623 implementation of microbial diversity endpoints in pesticide ecotoxicity assessment.
624 We are currently at the era of amplicon sequencing approaches which provide a
625 high-resolution overview of the phylogenetic composition of the soil microbial
626 community and of the response of its individual members to pesticide exposure.
627 However, this approach could not provide any information about the functional role
628 of the affected microbes which requires metaomic approaches. The introduction of
629 metagenomic and most importantly metatranscriptomic analysis in studies looking at
630 the effects of pesticides on soil microorganisms would provide a holistic view of the
631 functional response of the soil microbial community to pesticide exposure identify-
632 ing key responders and toxicity mechanisms.
633 Up to date literature evidence suggests that pesticides when used at the
634 recommended dose rates are not expected to impose adverse effects on the soil
635 microbial community. Still a concerted action is required to be able to identify
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636exceptions to this statement and this could be achieved through the establishment of
637a robust scheme of toxicity and risk assessment analysis.
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